

WEBINAR SERIES ON ADVANCED MOBILITY

Acknowledgement

The presenter wishes to acknowledge the IEEE Vehicular Technology Society for their sponsorship of the Webinar Series on Advanced Air Mobility.

Distributed Joint Radar-Communications

Kumar Vijay Mishra

United States DEVCOM Army Research Laboratory

IEEE Vehicular Technology Society Webinar Series on Advanced Air Mobility 13 November 2023

About the speaker Kumar Vijay Mishra

- ARL Senior Fellow, United States DEVCOM Army
- Research Fellow, SnT, U of Luxembourg ٠
- Technical Advisor: Hertzwell, Singapore; Aura Intelligent Systems, Boston ٠
- Vice-Chair, URSI Commission C ٠
- Editor, IEEE Transactions on Aerospace and Electronic Systems ۰
- Vice-Chair, IEEE Synthetic Aperture Standards Committee; Member, IEEE SPS SAM, SPS TWG on Synthetic Apertures, INGR IEEE International Network Generations Roadmap, AESS Radar Systems
- Founding member, IEEE ComSoc ISAC ETI •
- **Research Interests:**

IEEE PRESS

Coming Soon Signal Processin Next-Generation Cognitive Radar Systems

HERTZWELL

AURA

INTELLIGENT SYSTEMS

WILE

Acknowledgements

- ARL: Brian M. Sadler
- U of Luxembourg: M. R. Bhavani Shankar, Bjorn Ottersten, Ahmet M. Elbir
- U of Texas, Dallas: Mohammad Saquib, Jiawei Liu
- UIS Colombia: Henry Arguello, Edwin Vargas, Roman Jacome, Jonathan Arley

Research was sponsored by the Army Research Laboratory and was accomplished under Cooperative Agreement Number W911NF-21-2-0288.

The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of the Army Research Laboratory or the U.S. Government. The U.S. Government is authorized to reproduce and distribute reprints for Government purposes notwithstanding any copyright notation herein.

Courtesy: The Tomorrow War (2021)

I found my passion in the Army Research Lab.

Motivation

Wireless Communications Trends

- Increasing number of connected devices
- Increasing demand in high quality wireless services

[1] VNI Global Mobile Data Traffic Forecast 2013-2018, Cisco, 2014[2] The Mobile Economy, GSMA, 2014

[3] Internet of Things, Cisco, 2013

EB (Exa Bytes) = 1,000,000 TB (Tera Bytes) Bn= Billions

How to Meet Demand in Current Landscape?

Measure for Throughput : Shannon formula as a guide $C = n W \log(1 + SINR)$

- Higher the better \rightarrow Linear dependence
- Depends on spectrum allocation

Bandwidth W

- Natural resource, scarce
- Not everything is useful, expensive
- Maximize the spectral efficiency bits/sec/ Hz

PLAN TO REALLOCATE PART OF RADIO BAND DISPUTED By Reginald Stuart, Special To the New York Times July 6, 1986 2012 Che Science Of Crisis in Mobile Spectrum

The New Hork Times

Wireless companies say that smartphones are threatening to overwhelm their networks, and are asking the government for help. But some experts maintain that technology already has the answers.

By Brian X. Chen

1986

April 17, 2012

AT&T, Verizon, T-Mobile and Sprint say they need more radio spectrum, the government-rationed slices of radio waves that carry phone calls and wireless data.

2021

Wealth

Bloomberg Wealth

Photographer: A

Billionaires Musk, Ergen and Dell Brawling Over Spectrum at FCC

By Todd Shields + Follow October 9, 2021, 8:45 AM EDT

Fight boils over for spectrum needed for proposed 5G service
 Disagreement on whether service would foul SpaceX signals

Sensor-Driven Vehicles

©. Audi, https://www.autonomousvehicletech.com/articles/136-the-new-audi-a8-reaches-level-3

© 2. Qualcomm, Tesla, Audi, https://www.texas.aaa.com/automotive/advocacy/self-driving-cars-autonomous-vehicles-explained.html

© 3. Hertzwell © 4. Owners, graphic from web

Automotive Sensors

Parameter	RADAR	LIDAR	Camera		
Nature	Active	Active	Passive		
Range	Long Upto 250m	Mid-range Upto 100m	Near range Upto 15-20m		
Accuracy	 Descent 0.1 m, ±0.1 m/s H/V-FOV 30/50 	 Good 0.02 m 0.1deg 360deg H-FOV 	GoodRecognition at 15m		
Observations	 Robust to harsh conditions Detecting Doppler Low cost Lack of semantic information 	High Accuracy3D MappingHigh cost	 Semantic information Poor performance in adverse weather, night No Doppler information 		

In Addition, Modern Cars are ...

IEEE Spectrum Allocation

Modern radar/comms operate in an increasingly crowded RF spectrum						AVIATION TODAY 2022 US Airlines Begin Installing 5G C-Band		Academic rigor, journalistic flair Radio interference from satellites is threatening astronomy – a	
Radars need to use full bandwidth and undertake continuous transmissions					Filter for Radio Altimeters on Airbus A320s By Woodrow Bellamy III September 14, 2022 Send Feedback # @WBellamyIIIAC 5G C=Bad Airbus 3320, airlines, FAA, radio)US 4, 2022 radio	Proposed zone for testing new technologies could head off the problem Authors Patente Work 2, 502 8 Jan Edit 2023		
IEEE Radar band	VHF/UHF [30 MHz – 1 GHz]	L [1-2 GHz]	S [2-4 GHz]	C [4-8 GHz]	X [8-12 GHz]	Ku, K, Ka ,V, W [12-300 GHz]	altimeter, U.S. f ¥ ≅ in ⊖ ≓		Radio Astronomy Observatory Associate Professor of Electrical Engineering, United States Naval Academy
Examples of radar usage	FOPEN	ARSR	ASR, NEXRAD	TDWR	CASA	Automotive radars, cloud radars			Mariya Zheleva Assistant Professor of Computer Science, University at Albany, State University of New York
Co-existing comms	TV/broadcast/ 802.11ah/f	WiMAX, JTIDS	LTE	802.11a/ ac	LTE	802.11ad, mmwave comm	(Photo courtery of Thales)	RED V	COLIN LABORATORY MILlicontrol of Thomson Millicontrol Millicont Millicontrol Millicont Millicontrol Millicontrol Millicontrol Millicont Millicontrol Millicont Millicontrol Millicont Mill
COARPA Shared Spectrum A Communications (S	ccess for Radar and SSPARC)	2nd EARS Workshop	Welcome Work ENHANCI TO THE RADIO OCTOBER Sponsored by the N	e to the 2nd (shop on NG ACCESS O SPECTRUM (19 - 20, 2015 ational Science Foundation	Platforms for Wireless F	Advanced Research	An NSF Spectre Innovation Cer	Im Iter	16 THE THREAT TO WEATHER RADARS BY WIRELESS TECHNOLOGY
Spectrun enabled l	n and Wire by Future [•]	eless In Techno	novatio	on (SWIFT)	Nationa Dynami	Radio c Zone	RFDATA FACTORY	A CONTRACTOR	

Integrated Sensing and Communications (ISAC) Topologies

More ISAC Topologies

Channel Access	Hardware	Waveform
 Independent Coordinated Joint Shared 	 Separate Tx & Rx Same Tx, Common Rx Common Tx, Same Rx Common Tx & Rx 	 Separate Common Resource-shared
Location		Constallered
	Performance/Functionality	Specialized

Courtesy: Citadel (S01E06)

Spectral Co-Design Automotive JRC

Monostatic and Bi-Static Systems

- Bi-static radar exploits bounced-off Tx signals from other vehicles
- Extends sensing area to NLOS w.r.t. Rx
- Communications is more susceptible to interference from surroundings than the direct path
- Bi-static system is more general

Two waveforms for mm-Wave JRC

• PMCW

- Viable alternative to FMCW for high-res radars
- No linear frequency ramp (and simpler on-chip implementations) for range estimation
- Sharp, thumbtack ambiguity function; MIMO radar in code domain; embedded comms
- OFDMA
 - Differentiates users in both time and frequency (unlike OFDM in time-only)
 - Stable performance in multipath fading and relative simple synchronization
 - High dynamic range and efficient receiver processing based on FFT

mm-Wave Tx-Rx Design

- Multiplexing strategy required to enhance waveform identifiability
- The receive processing consists of coarse and super-resolution steps
- JRC super-resolution algorithm has lower complexity than 2D-FFT and 2D-MUSIC

mm-Wave JRC Performance

- A comparison of estimation errors in the coupled parameter range for OFDMA-JRC and Doppler for PMCW-JRC
- When SNR is above a threshold, re-estimating coupled parameter using all subcarriers after comm removal enhances the recovery
- At low SNR, radar-only frames/carriers are a more optimal choice

Spectral Co-Design Distributed IBFD ISAC

Distributed ISAC Considerations

<u>Challenge:</u> Future networks will be more decentralized and edge-focused Current research devoted to colocated/centralized ISAC

Statistical/Distributed Co-Design MRMC

Target RCS is not identical for all Tx-Rx pairs; modeled statistically	Radars work in cooperation with the downlink-reflected signal
IBFD MU-MIMO comms transmit while receiving target echoes	Determine a common metric for both radar and comms
Compounded and weighted sum mutual information as metric	Practical constraints: power budget, QoS, and PAR

• J. Liu, K. V. Mishra and M. Saquib, "Co-Designing Statistical MIMO Radar and In-band Full-Duplex Multi-User MIMO Communications," arxiv preprint 2020.

Spectral Codesign System model

Spectral Codesign System model

Numerical Experiments

J. Liu, K. V. Mishra and M. Saquib, "Co-Designing Statistical MIMO Radar and In-band Full-Duplex Multi-User MIMO Communications," arxiv preprint 2020.

Courtesy: The Expanse (Season 5)

Spectral Co-Design Learning for JRC Hybrid Beamforming

When ML makes sense in ISAC?

Model/Algorithm Deficit

- Conventional engineering approach is not applicable because models stemming from physics/mathematics/algorithms cannot be rigorously specified
- Sufficiently large training data sets exhibiting all the variation in the observed data sets available or can be created (e.g., using GANs)
- Labeling of training data can be done with a reasonable effort

Tasks

- \circ $\,$ Need for Narrow AI with super-human performance, no need for broader intelligence
- The task does not need explicit reasoning based on broader background knowledge.
- No requirement of rigorous quantitative performance guarantees/explicit explanations for how the result was found

Results

- Numerical simulations suffice instead of analytical optimality results
- Learned phenomenon remains stationary to acquire large amount of training data

Deep learning examples in radar sensing

- Target classification using deep learning and HRRPs
- Waveform classification using complex-valued and real-valued NNs
- CNNs give better and more predictable performance with less training data and smaller NN

Analysis of micro-doppler signatures

Deep Learning Applications in Comms Physical Layer

DL can be used for various PHY applications.

Elbir, Ahmet M. and Kumar Vijay Mishra. "Cognitive Learning-Aided Multi-Antenna Communications.", IEEE Wireless Communications, in press.

Major Challanges in THz Hybrid Beamforming :

- High path loss: LoS-dominant with multiple NLoS channel
- Ultra-massive number of antennas: Group-of-subarrays (GoSA)
- Complexity: Deep-learning-based solutions

$$\begin{aligned} & \underset{\mathbf{F}_{\mathrm{RF}},\{\mathbf{F}_{\mathrm{BB}}[m]\}_{m\in\mathcal{M}}}{\min} \frac{1}{M} \sum_{m\in\mathcal{M}} \|\mathbf{F}_{\mathrm{RF}}\mathbf{F}_{\mathrm{BB}}[m] - \mathbf{F}_{\mathrm{C}}[m]\|_{\mathcal{F}} & \underset{\mathbf{F}_{\mathrm{RF}},\{\mathbf{F}_{\mathrm{BB}}[m],\mathbf{P}[m]\}_{m\in\mathcal{M}}}{\min} \frac{1}{M} \sum_{m\in\mathcal{M}} \|\mathbf{F}_{\mathrm{RF}}\mathbf{F}_{\mathrm{BB}}[m] - \mathbf{F}_{\mathrm{R}}\mathbf{P}[m]\|_{\mathcal{F}} \\ & \text{s.t.} \sum_{m\in\mathcal{M}} \|\mathbf{F}_{\mathrm{RF}}\mathbf{F}_{\mathrm{BB}}[m]\|_{\mathcal{F}} = MN_{\mathrm{S}}, \\ & |[\mathbf{F}_{\mathrm{RF}}]_{i,j}| = \frac{1}{\sqrt{N_{\mathrm{T}}}}, \ \forall i, j. \\ & |[\mathbf{F}_{\mathrm{RF}}]_{i,j}| = \frac{1}{\sqrt{N_{\mathrm{T}}}}, \ \forall i, j. \\ & \mathsf{RC} \ \mathsf{Hybrid} \ \mathsf{Beamforming} \ \mathsf{Design} \\ & \mathbf{F}_{\mathrm{RF}},\{\mathbf{F}_{\mathrm{BB}}[m],\mathbf{P}[m]\}_{m\in\mathcal{M}} \ \frac{1}{M} \sum_{m\in\mathcal{M}} \left(\eta \|\mathbf{F}_{\mathrm{RF}}\mathbf{F}_{\mathrm{BB}}[m] - \mathbf{F}_{\mathrm{C}}[m]\|_{\mathcal{F}} + \bar{\eta} \|\mathbf{F}_{\mathrm{RF}}\mathbf{F}_{\mathrm{BB}}[m] - \mathbf{F}_{\mathrm{R}}\mathbf{P}[m]\|_{\mathcal{F}} \right) \\ & \text{s.t.} \sum_{m\in\mathcal{M}} \|\mathbf{F}_{\mathrm{RF}}\mathbf{F}_{\mathrm{BB}}[m]\|_{\mathcal{F}} = MN_{\mathrm{S}}, \\ & |[\mathbf{F}_{\mathrm{RF}}]_{i,j}| = \frac{1}{\sqrt{N_{\mathrm{T}}}}, \ \forall i, j \in \mathcal{S}, |[\mathbf{F}_{\mathrm{RF}}]_{i,j}| = 0, \ \forall i, j \in \bar{\mathcal{S}}, \\ & \mathbf{P}[m]\mathbf{P}^{\mathrm{H}}[m] = \mathbf{I}_{N_{\mathrm{S}}} \end{aligned}$$

Opportunistic ISAC Using Wi-Fi Protocol for Radar

802-11ad-Based Joint Radar-Comms

- IEEE 802.11ad Wi-Fi standard enables highthroughput (7 Gbps) at 60 GHz
 - Very high rate (~GHz) ADCs → More power, space and cost
 - Can be exploited for a concurrent radar application
- Applications: parking assistance, lane change assistance, object detection

Parameters	Current literature	Proposed radar
Range	Long range (200m)	Short range (40m)
Target model	Simple point targets	Extended targets
Type of target	Static targets	Dynamic targets
Golay sequence	Standard	Modified / Doppler resilient

IEEE 802. I lad Frame Structure

• <u>Single</u> <u>Carrier</u> <u>PHY</u> sical layer (SCPHY) encapsulates Golay sequences

802.11ad Golay sequences: Two 256-length or four 128-length pairs

Golay Complementary Sequences (Golay Pairs)

Time-domain Property: Zero sidelobes

Frequency-domain Property: Constant spectrum

256

Good Autocorrelation, but Doppler Resilience?

Modification to 802.11ad

A. Pezeshki, A. R. Calderbank, W. Moran, and S. D. Howard, "Doppler resilient Golay complementary waveforms," IEEE Transactions on Information Theory, 54(9), 4254-4266, 2008.

Prouhet-Thou-Morse (PTM) (Pezeshki et al., 2008) sequence to make the protocol Doppler-resilient

Prouhet-Thue-Morse (PTM) Sequence	Modified Golay sequence		
$q_{p} = \begin{cases} 0, & \text{if } p = 0 \\ q_{\frac{p}{2}}, & \text{if } (p \text{ modulo } 2) = 0 \\ \hline q_{\frac{p-1}{2}}, & \text{if } (p \text{ modulo } 2) = 1, \end{cases}$	if $q_{\rho} = 0, \{G_{a,N}[n], G_{b,N}[n]\}$ if $q_{\rho} = 1, \{-G_{b,N}[-n], G_{a,N}[-n]\}$		
Example			
PTM Sequence: $[01] : G_{a,N}[n], G_{b,N}[n], -G_{b,N}[n]$	$N[-n], G_{a,N}[-n]$:		
$\sum_{\rho=0}^{3} e^{-j\rho\theta} (G_{\rho,N}[n] * G_{\rho,N}[-n]) \approx 1((G_{1,N}[n] * G_{1,N}[-n]) + (G_{3,N}[n] * G_{3,N}[-n])) + 2((G_{2,N}[n] * G_{2,N}[-n]) + (G_{3,N}[n] * G_{3,N}[-n]))$			
= (2N + 2(2N))	$\delta[n] = 6N\delta[n].$		
	dB		

Extended Target Modeling (via PyBullet)

G. Duggal, S. Vishwakarma, K. V. Mishra and S. S. Ram, "Doppler-Resilient 802.11ad-Based Ultrashort Range Automotive Joint Radar-Communications System," IEEE Transactions on Aerospace and Electronic Systems, vol. 56, no. 5, pp. 4035-4048, 2020.

Extended Target Modeling Results – Multiple Targets

802.11ad-Based UAV-Borne Radar

Surface clutter models and PyBullet modeling used to obtain the signatures

S. S. Ram and K. V. Mishra, "Beam Positioning for UAV Communications using On-Board 802.11ad Radar," IEEE SAM 2022.

Spectral Co-Existence Dual-Blind Deconvolution

Co-Existence Receiver

Passive Radar

Dynamic Communications

Problem: Neither the transmitted signals nor the channels are known

E. Vargas, K. V. Mishra, R. Jacome, B. M. Sadler and H. Arguello, "Dual-Blind Deconvolution for Overlaid Radar-Communications Systems," arXiv preprint arXiv:2208.04381, 2022. E. Vargas, K. V. Mishra, R. Jacome, B. M. Sadler and H. Arguello, "Joint radar-communications processing from a dual-blind deconvolution perspective," IEEE ICASSP, 2022.

Dual-Blind Deconvolution Problem

$$y(t) = x_r(t) * h_r(t) + x_c(t) * h_c(t)$$

$$[\mathbf{y}]_{v} = \sum_{\ell=0}^{d-1} [\alpha_{r}]_{\ell} [\mathbf{s}]_{n} e^{-j2\pi(n[\tau_{r}]_{\ell} + p[\nu_{r}]_{\ell})} + \sum_{q=0}^{q} [\alpha_{c}]_{q} [\mathbf{g}_{p}]_{n} e^{-j2\pi(n[\tau_{c}]_{q} + p[\nu_{c}]_{q})}$$

Unknown variables: set of channel parameters $\{\tau_r, \nu_r, \alpha_r, \tau_c, \nu_c, \alpha_c\}$ and the transmit signals s, g

Atomic norm minimization framework

Leveraging the sparse nature of the channels, we use ANM framework for super-resolved estimations of continuous-valued channel parameters.

> We define the atomic sets as

$$\mathcal{A}_{r} = \left\{ \boldsymbol{u}\boldsymbol{a}(\boldsymbol{r})^{H} : \boldsymbol{r} \in [0,1)^{2}, \left| |\boldsymbol{u}| \right|_{2} = 1 \right\}$$
$$\mathcal{A}_{c} = \left\{ \boldsymbol{v}\boldsymbol{a}(\boldsymbol{c})^{H} : \boldsymbol{c} \in [0,1)^{2}, \left| |\boldsymbol{v}| \right|_{2} = 1 \right\}$$

$$\begin{aligned} \left| |\boldsymbol{Z}_{r}| \right|_{\mathcal{A}_{r}} &= \inf_{[\alpha_{r}]_{\ell}, \boldsymbol{r}_{\ell} \in [0,1]^{2}, ||\boldsymbol{u}||_{2}=1} \{ \sum_{\ell} |[\alpha_{r}]_{\ell} | \boldsymbol{Z}_{r} = \sum_{\ell} [\alpha_{r}]_{\ell} \boldsymbol{a}(\boldsymbol{r}_{\ell}) \boldsymbol{u}^{H} \} \\ \left| |\boldsymbol{Z}_{c}| \right|_{\mathcal{A}_{c}} &= \inf_{[\alpha_{c}]_{q}, \boldsymbol{c}_{q} \in [0,1]^{2}, ||\boldsymbol{v}||_{2}=1} \{ \sum_{q} |[\alpha_{c}]_{q} | \boldsymbol{Z}_{c} = \sum_{q} [\alpha_{c}]_{q} \boldsymbol{a}(\boldsymbol{c}_{q}) \boldsymbol{v}^{H} \} \end{aligned}$$

conv(

 $t = \|\boldsymbol{x}\|_A$

> The primal optimization problem is given by

$$\underset{\mathbf{Z}_{r},\mathbf{Z}_{c}}{\text{minimize}} ||\mathbf{Z}_{r}||_{\mathcal{A}_{r}} + ||\mathbf{Z}_{c}||_{\mathcal{A}_{c}} \text{subject to } \mathbf{y} = \aleph_{r}(\mathbf{Z}_{r}) + \aleph_{c}(\mathbf{Z}_{c})$$

E. Vargas, K. V. Mishra, R. Jacome, B. M. Sadler and H. Arguello, "Dual-Blind Deconvolution for Overlaid Radar-Communications Systems," arXiv preprint arXiv:2208.04381, 2022. E. Vargas, K. V. Mishra, R. Jacome, B. M. Sadler and H. Arguello, "Joint radar-communications processing from a dual-blind deconvolution perspective," IEEE ICASSP, 2022.

Localization for single Rx

E. Vargas, K. V. Mishra, R. Jacome, B. M. Sadler and H. Arguello, "Dual-Blind Deconvolution for Overlaid Radar-Communications Systems," arXiv preprint arXiv:2208.04381, 2022. E. Vargas, K. V. Mishra, R. Jacome, B. M. Sadler and H. Arguello, "Joint radar-communications processing from a dual-blind deconvolution perspective," IEEE ICASSP, 2022.

Other Distributed ISAC Architectures

Emerging Distributed JRC/ISAC Trends

S. H. Dokhanchi, M. R. B. Shankar, K. V. Mishra, and B. Ottersten, "Enhanced Automotive Target Detection through Radar and Communications Sensor Fusion," IEEE ICASSP 2021.
S. Sedighi, K. V. Mishra, M. R. B. Shankar and B. Ottersten, "Localization With One-Bit Passive Radars in Narrowband Internet-of-Things Using Multivariate Polynomial Optimization," IEEE T-SP, 2021.
A. M. Elbir, K. V. Mishra and S. Chatzinotas, "Terahertz-Band Joint Ultra-Massive MIMO Radar-Communications: Model-Based and Model-Free Hybrid Beamforming," IEEE J-STSP, 2021.
S. S. Ram and K. V. Mishra, "UAV-Based Urban Monitoring Using on-Board 802.11 ad Radar," IEEE SAM 2022.
L. Wu, K. V. Mishra, M. R. B. Shankar and B. Ottersten, "Heterogeneously-Distributed Joint Radar Communications: Bayesian Resource Allocation," IEEE J-SAC, 2022.

T. Wei, L. Wu. K. V. Mishra, M. R. B. Shankar and B. Ottersten," Multi-IRS-Aided Wideband Integrated Sensing and Communications," 2022.

Thank you!

Signal Processing for Joint Radar-Communications

Edited by

WILEY

Kumar Vijay Mishra • M. R. Bhavani Shankar Björn Ottersten • A. Lee Swindlehurst

IEEE PRESS

Join IEEE VTS at www.vtsociety.org

Follow IEEE VTS on social media

Website www.vtsociety.org

Facebook facebook.com/IEEEVTS

Twitter @IEEE_VTS

LinkedIn

www.linkedin.com/company/ieee-vehiculartechnology-society

