

WEBINAR SERIES ON ADVANCED MOBILITY

Acknowledgement

The presenter wishes to acknowledge the IEEE Vehicular Technology Society for their sponsorship of the Webinar Series on Advanced Air Mobility.

Accessing From Sky: UAV/Drone Communications for 5G and Beyond

Rui Zhang

The Chinese University of Hong Kong, Shenzhen and National University of Singapore Fellow of IEEE, Fellow of Academy of Engineering Singapore Clarivate Analytics Highly Cited Researcher e-mail: rzhang@cuhk.edu.cn, elezhang@nus.edu.sg

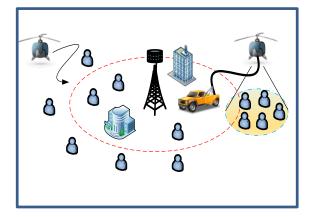
IEEE VTS Webinar Series on Advanced Air Mobility April 3, 2023

Outline

□ Integrating UAVs/Drones into Future Wireless Networks

- Motivations and benefits
- What's new over terrestrial communications?

Two Main Challenges

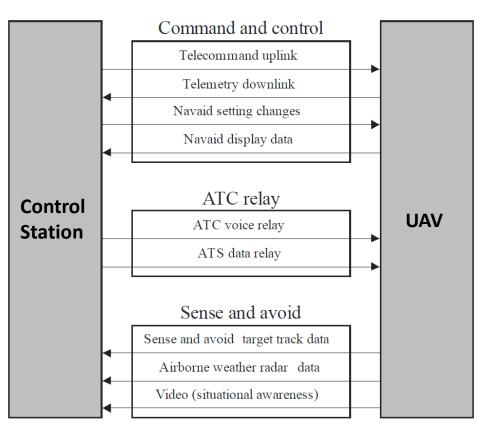

- Trajectory optimization for UAV-assisted communication
- Aerial-ground interference mitigation in cellular-connected UAV

Conclusion and Future Work

UAV/Drone Applications

Traffic offloading

IoT Data Harvesting


Wireless Communications for UAVs: Basic Requirement

Control and Non-Payload Communications (CNPC)

- Ensure safe, reliable, and effective flight operation
- Low data rate, high reliability, high security, low latency

Payload Communications

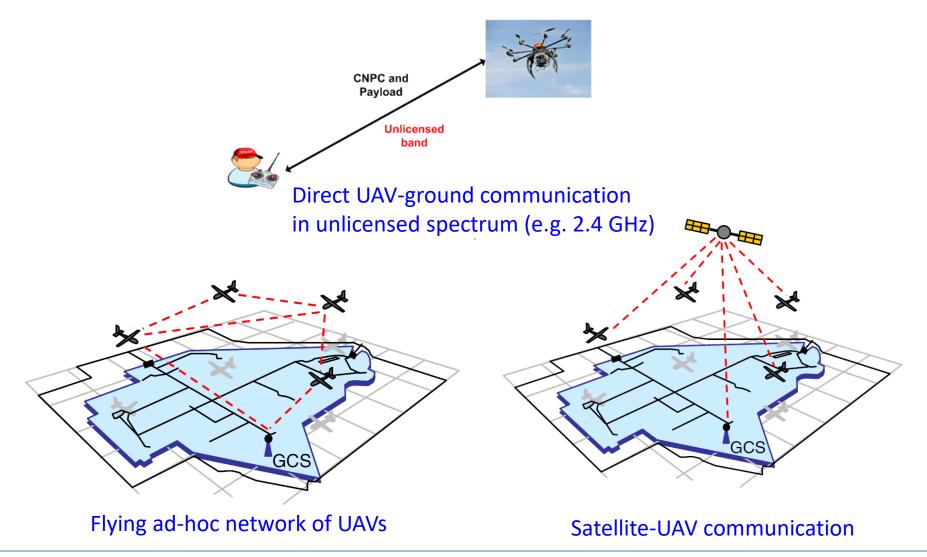
- Application specific data (e.g., HD/4K video, internet data)
- Much higher rate than CNPC, less stringent on reliability/latency

CNPC information flows [ITUReportM.2171]

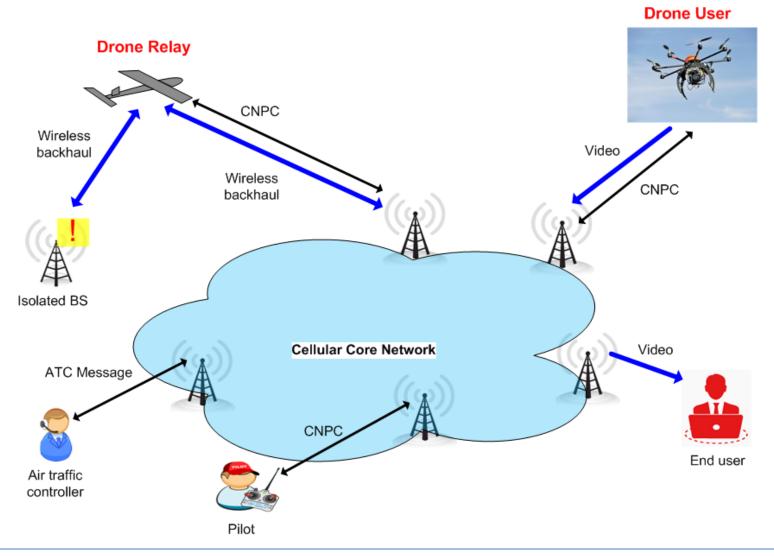
ITU, "Characteristics of unmanned aircraft systems and spectrum requirements to support their safe operation in non-segregated airspace," Tech. Rep. M.2171, Dec. 2009.

3GPP UAV Communication Requirement

	Data Type	Data Rate	Reliability	Latency
Downlink (DL: BS to UAV)	Command and control	60-100 Kbps	10 ⁻³ packet error rate	50 ms
Uplink	Command and control	60-100 Kbps	10 ^{−3} packet error rate	
(UL: UAV to BS)	Application data	Up to 50 Mbps		Similar to terrestrial user

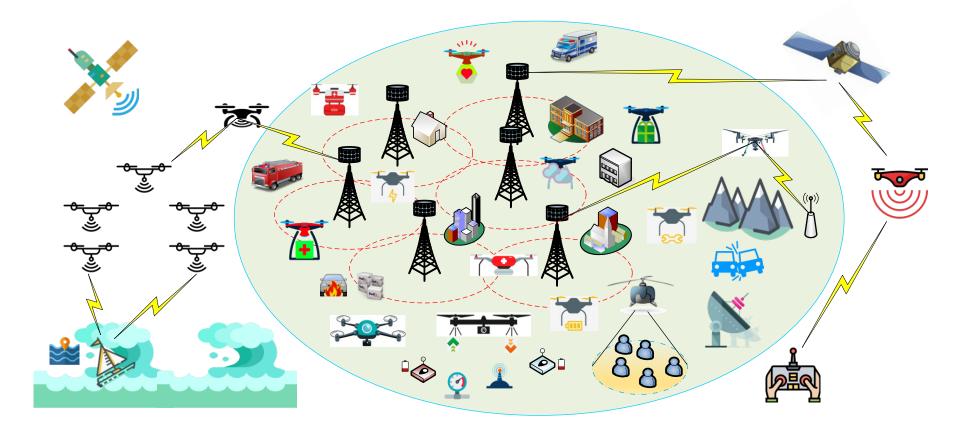

3GPP TR 36.777: "Technical specification group radio access network: study on enhanced LTE support for aerial vehicles", Dec. 2017.

China Mobile Requirement for Typical Payload


UAV Application	Height coverage	Payload traffic latency	Payload data rate (DL/UL)
Drone delivery	100 m	500 ms	300 Kbps/200 Kbps
Drone filming	100 m	500 ms	300 Kbps/30 Mbps
Access point	500 m	500 ms	50 Mbps/50 Mbps
Infrastructure inspection	100 m	3000 ms	300 Kbps/10 Mbps
Drone fleet show	200 m	100 ms	200 Kbps/200 Kbps
Precision agriculture	300 m	500 ms	300 Kbps/200 Kbps

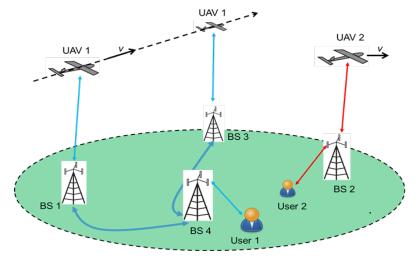
"China mobile technical report: Internet of drones (in Chinese)," http://www.jintiankansha.me/t/AE9FsWW9tc

Existing Wireless Technologies for UAV Communications


New Approach: Cellular-Connected UAV

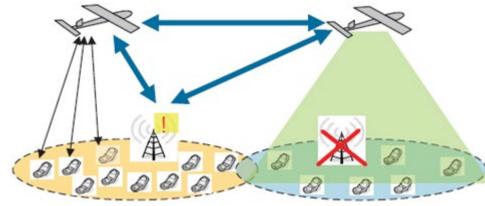
Comparison of Wireless Technologies for UAV

Technology	Advantages	Disadvantages
Direct WiFi	SimpleLow cost	 Limited range/data rate Vulnerable to interference Non-scalable for massive deployment
Satellite	Global coverage	 Costly Heavy/bulky/energy consuming equipment High latency
Ad-hoc network	 Robust and adaptable Support for high mobility 	Low spectrum efficiencyIntermittent connectivityComplex routing protocol
Cellular network	 Almost ubiquitous accessibility Cost-effective Superior performance and scalability 	 Unavailable in remote areas Potential interference with terrestrial communications


Future UAV Networks: An Air-Ground Integrated Architecture

Y. Zeng, Q. Wu, and R. Zhang, "Access from the Sky: a tutorial on UAV communications for 5G and beyond," *Proceedings of the IEEE*, Dec. 2019 (Invited Paper)

Focus of This Talk: Integrating UAVs into Cellular


Cellular-Connected UAV: UAV as new aerial user/terminal in cellular network

Typical applications:

- ✓ CNPC
- ✓ Video/photo upload
- ✓ Edge computing
- ✓ Localization (for UAV)

UAV-Assisted Communication: UAV as new aerial communication platform

Typical applications:

- ✓ Aerial BS/AP/relay
- ✓ IoT data harvesting
- ✓ Wireless power transfer
- ✓ Localization (for ground terminal)

Integrating UAVs into 5G/6G: A Win-Win Technology

□ 5G/6G for UAVs:

- URLLC (with <20ms latency, >99.99% reliability): more secure CNPC
- eMBB (with 20 Gbps peak rate): real-time UHD video payload for VR/AR
- mMTC/D2D: UAV swarm communications and networking
- Cellular positioning (with cm accuracy): UAV localization/detection
- Massive MIMO: 3D coverage, aerial-terrestrial interference mitigation
- Edge-computing: UAV computing offloading, autonomous flight/navigation

UAVs for 5G/6G:

- > New business opportunities by incorporating UAVs as new aerial users
- More robust and cost-effective cellular network with new aerial communication platforms

UAV Communications: What's New over Terrestrial?

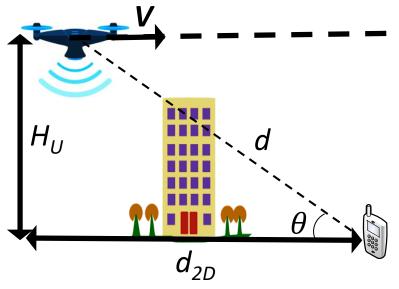
Characteristic	Opportunities	Challenges
High altitude	 Wide ground coverage as aerial BS/relay 	 Require 3D cellular coverage for aerial user
High LoS probability	 Strong and reliable communication link High macro-diversity Slow communication scheduling and resource allocation 	 Severe aerial-terrestrial interference Susceptible to terrestrial jamming/eavesdropping
High 3D mobility	 Traffic-adaptive deployment QoS-aware trajectory design 	Frequent handoverTime-varying wireless backhaul
Size, weight, and power (SWAP) constraint		 Limited payload and endurance Energy-efficient design Compact and lightweight antenna/RF design

Y. Zeng, Q. Wu, and R. Zhang, "Access from the Sky: a tutorial on UAV communications for 5G and beyond," *Proceedings of the IEEE*, Dec. 2019 (Invited Paper)

Outline

Integrating UAVs/Drones into Future Wireless Networks

- Motivations and benefits
- What's new over terrestrial communications?


Two Main Challenges

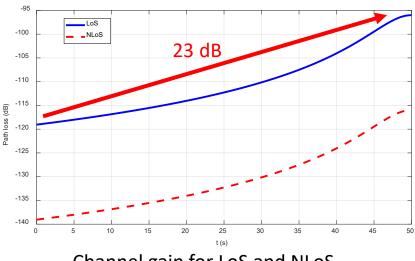
> Trajectory optimization for UAV-assisted communication

Aerial-ground interference mitigation in cellular-connected UAV

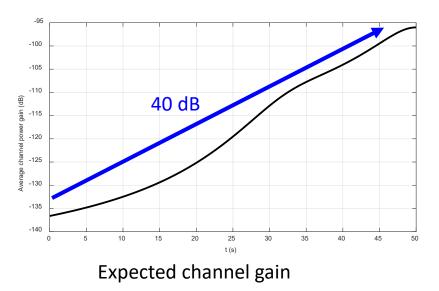
Conclusion and Future Work

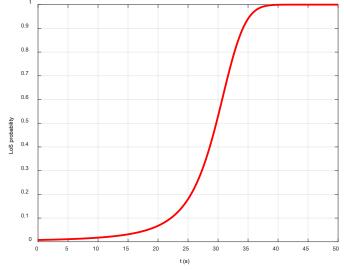
Exploiting UAV Mobility: How Much Can We Gain?

❑ UAV flies towards a ground terminal


- Double gains to improve the channel quality:
 - Shorter link distance
 - Less signal obstruction

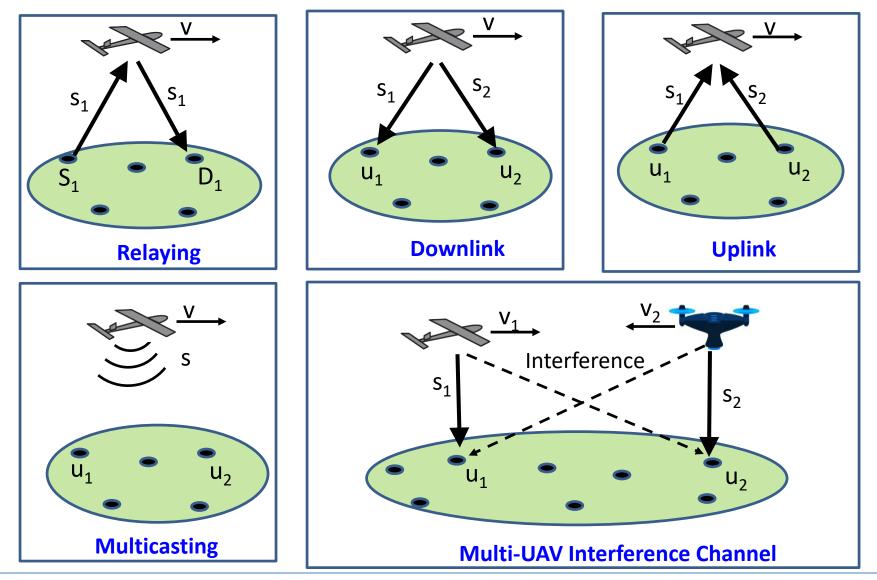
Assume the probabilistic LoS Channel model


Large-scale channel power model for LoS and NLoS conditions

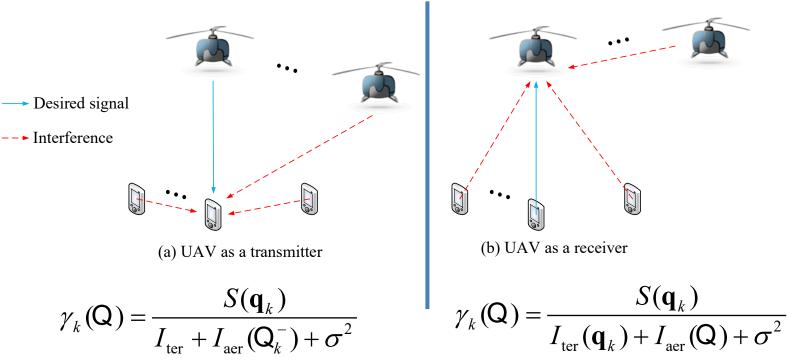

 $\beta(d) = \begin{cases} \beta_0 d^{-\alpha}, & \text{LoS Link} \\ \kappa \beta_0 d^{-\alpha}, & \text{NLoS Link} \end{cases} \\ \kappa < 1: \text{ additional attenuation for NLoS} \\ \square \text{ LoS probability: } P_{LoS}(\theta) = \frac{1}{1 + a \exp(-b(\theta - a))} \\ \square \text{ Expected channel gain: } E[\beta(d)] = P_{LoS}(\theta)\beta_0 d^{-\alpha} + (1 - P_{LoS}(\theta))\kappa\beta_0 d^{-\alpha} \end{cases}$

Exploiting UAV Mobility: How Much Can We Gain?

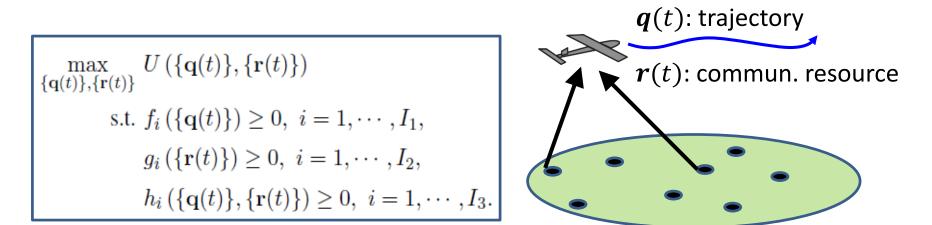
Channel gain for LoS and NLoS



LoS probability

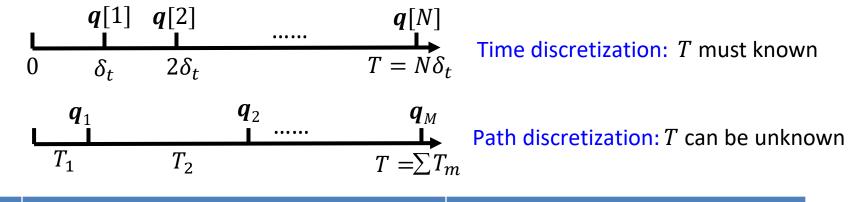

Initial distance d _{2D}	1000 m
UAV altitude H _u	100 m
Flying speed v	20 m/s
Path loss exponent α	2.3
Reference channel gain β_0	-50 dB
Probabilistic LoS model parameters	a = 10, b = 0.6, $\kappa = 0.01$

UAV-Assisted Communication: Fundamental Models



UAV Communication: Performance Metric

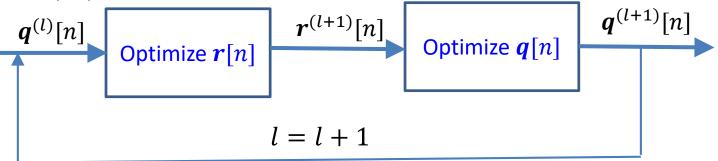
- □ Signal to interference-plus-noise ratio (SINR)
- Outage/coverage probability
- Communication throughput/delay
- □ Spectral/energy efficiency
- □ All dependent on UAV location/trajectory


Joint Trajectory-Communication Optimization: Continuous Time Formulation

- □ U: utility functions, e.g., communication rate, SINR, coverage probability, spectrum/energy efficiency
- \Box f_i : trajectory constraints, e.g., speed constraint, obstacle/collision avoidance
- \Box g_i : communication resource constraints, e.g., power, bandwidth
- □ *h_i*: coupled constraints, e.g., maximum tolerable interference power, minimum SINR requirement

Time vs. Path Discretization

□ Path discretization: generalized time discretization with variable slot length



	Time Discretization	Path Discretization
Pros	 Equal time slot length Linear state-space representation Incorporate maximum acceleration constraint easily 	 Fewer variables if UAV hovers or flies slowly No need to know <i>T a priori</i>
Cons	 Excessively large number of time slots when UAV moves slowly Needs to know <i>T a priori</i> 	 More variables if UAV flies with high/maximum speed most of the time

Discrete Time Formulation and Block Coordinate Descent

 $\max_{\{\mathbf{q}[n]\},\{\mathbf{r}[n]\}} U(\{\mathbf{q}[n]\},\{\mathbf{r}[n]\})$ s.t. $f_i(\{\mathbf{q}[n]\}) \ge 0, \ i = 1, \dots, I_1,$ $g_i(\{\mathbf{r}[n]\}) \ge 0, \ i = 1, \dots, I_2,$ $h_i(\{\mathbf{q}[n]\},\{\mathbf{r}[n]\}) \ge 0, \ i = 1, \dots, I_3.$

- Time or path discretization converts the problem into a discrete form
- The (discrete) joint trajectory and resource optimization problems are generally non-convex and difficult to solve
- Block coordinate descent: alternately update one block of variables (say, trajectory) with the other (resource allocation) fixed. Monotonically converge to a locally optimal solution

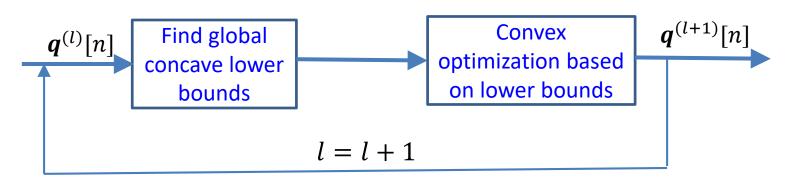
Successive Convex Approximation

- Even with given resource allocation, UAV trajectory optimization is usually nonconvex, and thus difficult to solve
 - Non-concave objective functions: e.g., rate maximization
 - Non-convex constraints: e.g., obstacle/collision avoidance, minimum speed
- Successive convex approximation (SCA):
 - Iocal optimization via solving a sequence of convex problems
 - converges to a KKT solution if appropriate local bounds are found

 $\max_{\{\mathbf{q}[n]\}} f_0(\{\mathbf{q}[n]\})$

s.t.
$$f_i(\{\mathbf{q}[n]\}) \ge 0, i = 1, \dots, I.$$

Non-convex optimization problem


Global concave lower bound

 $f_i(\{\mathbf{q}[n]\}) \ge f_{i,\mathrm{lb}}^{(l)}(\{\mathbf{q}[n]\}), \forall \mathbf{q}[n], i = 0, \cdots, I$

 $\max_{\{\mathbf{q}[n]\}} f_{0,\text{lb}}^{(l)}(\{\mathbf{q}[n]\})$

- s.t. $f_{i,\text{lb}}^{(l)}(\{\mathbf{q}[n]\}) \ge 0, i = 1, \cdots, I.$
- Convex optimization problem
- Solution is feasible to the original non-convex problem

Successive Convex Approximation

Communication rate maximization:

$$\log_2\left(1 + \frac{\gamma_0}{\|\mathbf{q}[n] - \mathbf{w}_k\|^{\alpha}}\right) \ge A_k - B_k\left(\|\mathbf{q}[n] - \mathbf{w}_k\| - \|\mathbf{q}^{(l)}[n] - \mathbf{w}_k\|\right)$$

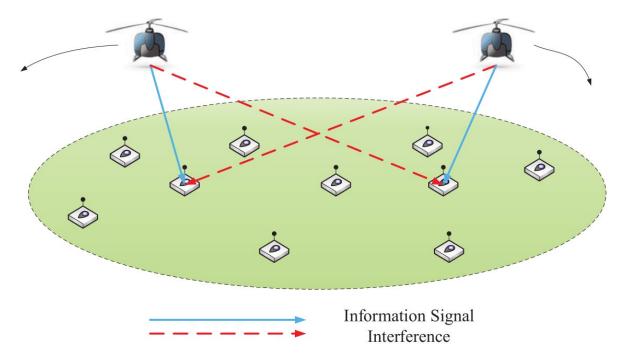
 A_k, B_k : poisitive coefficients depending on $\boldsymbol{q}^{(l)}[n]$

□ Minimum speed constraint:

$$\|\mathbf{v}[n]\| \ge V_{\min}$$

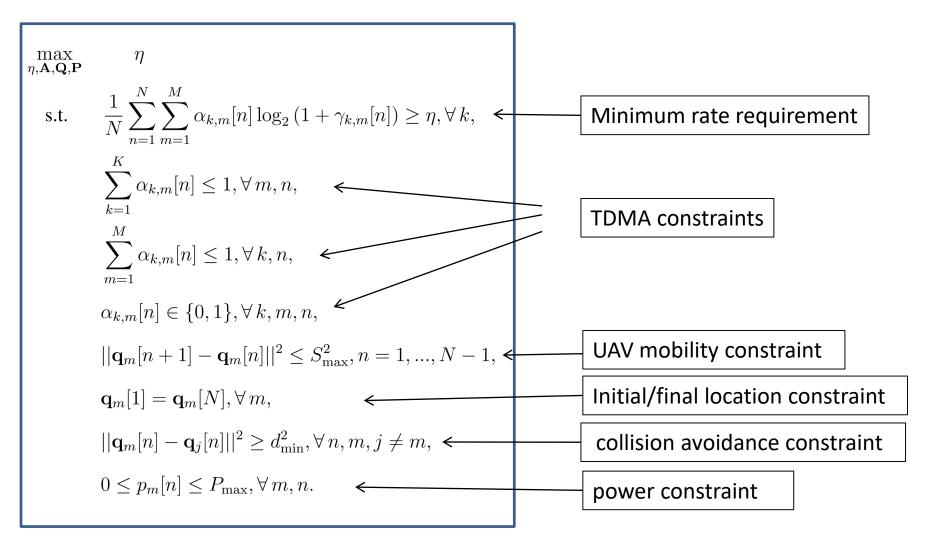
$$\|\mathbf{v}[n]\|^2 \ge \|\mathbf{v}^{(l)}[n]\|^2 + 2\mathbf{v}^{(l)T}[n](\mathbf{v}[n] - \mathbf{v}^{(l)}[n]) \ge V_{\min}^2$$

Case Studies


Multi-UAV enabled wireless network

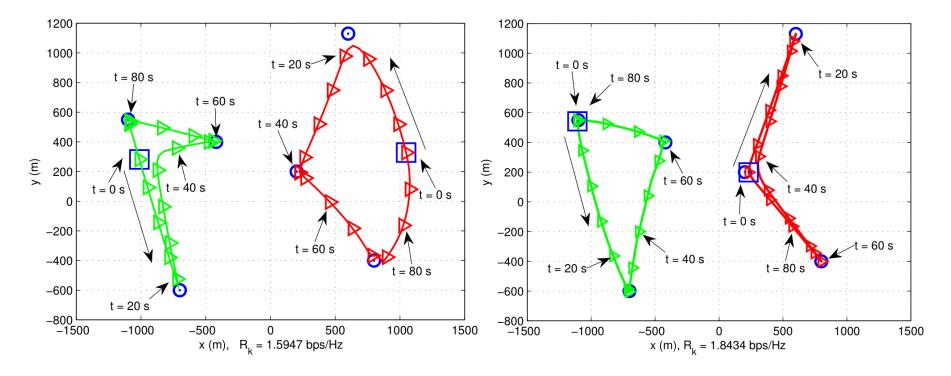
Q. Wu, Y. Zeng, and R. Zhang, "Joint trajectory and communication design for multi-UAV enabled wireless networks," *IEEE Trans. Wireless Commun.*, Mar. 2018. . (IEEE Communications Society Young Author Best Paper Award , 2021)

□ Energy-efficient UAV communication


Y. Zeng and R. Zhang, "Energy-Efficient UAV Communication with Trajectory Optimization," *IEEE Trans. Wireless Commun.*, June 2017. (IEEE Marconi Prize Paper Award in Wireless Communications, 2020)

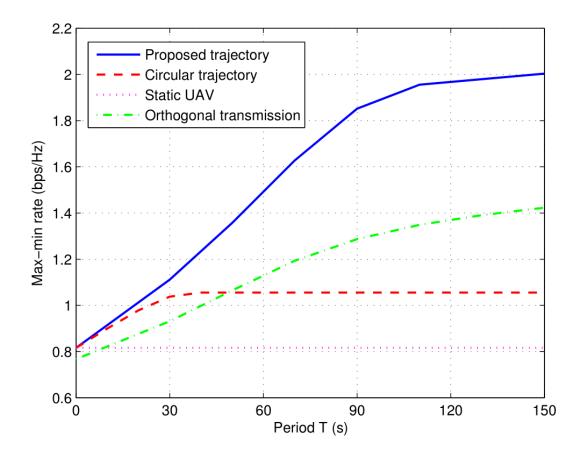
Multi-UAV Enabled Wireless Network

- Multi-UAV downlink communications with ground users
- □ TDMA for user communication scheduling
- Problem: maximize the minimum average rate of all users via joint communication (scheduling, power control) and UAV trajectories optimization


Problem Formulation

Nonconvex, solved by time-discretization and block coordinate descent

Simulation Results


New interference-mitigation approach: coordinated multi-UAV trajectory design

(a) Optimized UAV trajectories without power control.

(b) Optimized UAV trajectories with power control.

Simulation Results: Throughput-Delay Tradeoff

Longer flight period achieves higher throughput than static UAV, but incurs larger user delay on average: a fundamental Throughput-Delay Tradeoff

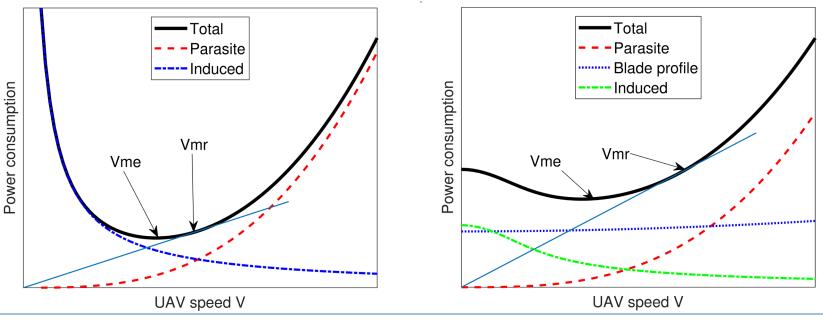
UAV Energy Consumption Model

- Limited on-board energy: critical issue in UAV communication, for both UAV as user or BS/relay
- □ UAV energy consumption: Propulsion energy >> Communication energy
- Empirical and Heuristic Models:
 - Empirical model based on measurement results, e.g.,
 - ✓ Fuel cost modelled by L1 norm of control force
 - $\checkmark\,$ Fuel cost proportional to the square of speed

Analytical Model

- Closed-form model based on well-established results in aircraft literature
- Propulsion power as a function of speed and acceleration

Y. Zeng and R. Zhang, "Energy-Efficient UAV Communication with Trajectory Optimization," *IEEE Trans. Wireless Commun.*, June 2017. (IEEE Marconi Prize Paper Award in Wireless Communications, 2020)

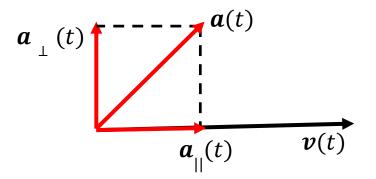

Y. Zeng, J. Xu, and R. Zhang, "Energy minimization for wireless communication with rotary-wing UAV," *IEEE Trans. Wireless Commun.,* Apr. 2019.

Energy Model Comparison: Straight and level flight

	Fixed-Wing	Rotary-Wing
Convexity with respect to V	Convex	Non-convex
Components	Induced and parasite	Induced, parasite, and blade profile
V = 0	Infinity	Finite

Fixed-Wing

Rotary-Wing



IEEE VTS Webinar Series, 2023

Energy Model with General Level Flight (Fixed-Wing)

$$\bar{E}(\mathbf{q}(t)) = \int_{0}^{T} \left[c_{1} \|\mathbf{v}(t)\|^{3} + \frac{c_{2}}{\|\mathbf{v}(t)\|} \left(1 + \frac{\|\mathbf{a}(t)\|^{2} - \frac{(\mathbf{a}^{T}(t)\mathbf{v}(t))^{2}}{\|\mathbf{v}(t)\|^{2}}}{g^{2}} \right) \right] dt + \frac{1}{2}m \left(\|\mathbf{v}(T)\|^{2} - \|\mathbf{v}(0)\|^{2} \right)$$

Work required to overcome air resistance Change in kinetic energy

- Only depends on speed and centrifugal acceleration (causing heading change)
- Independent of actual location or tangential acceleration (causing speed change)
- □ Work-energy principle interpretation

 $(\mathbf{q}(t),\mathbf{H})$

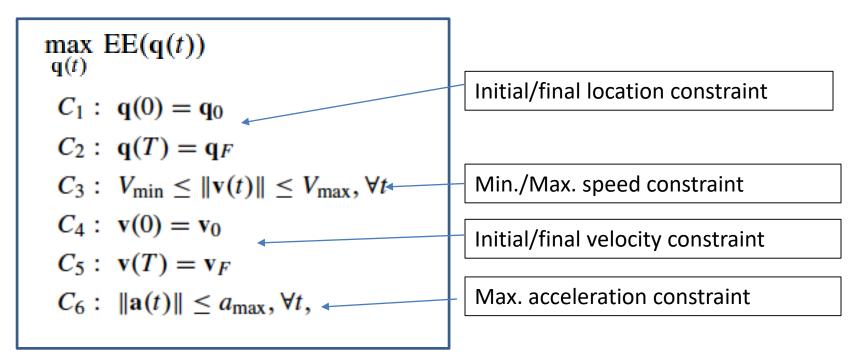
Energy-Efficient UAV Communication

□ UAV energy consumption (fixed-wing):

$$\bar{E}(\mathbf{q}(t)) = \int_0^T \left[c_1 \|\mathbf{v}(t)\|^3 + \frac{c_2}{\|\mathbf{v}(t)\|} \left(1 + \frac{\|\mathbf{a}(t)\|^2 - \frac{(\mathbf{a}^T(t)\mathbf{v}(t))^2}{\|\mathbf{v}(t)\|^2}}{g^2} \right) \right] dt + \frac{1}{2} m \left(\|\mathbf{v}(T)\|^2 - \|\mathbf{v}(0)\|^2 \right)$$

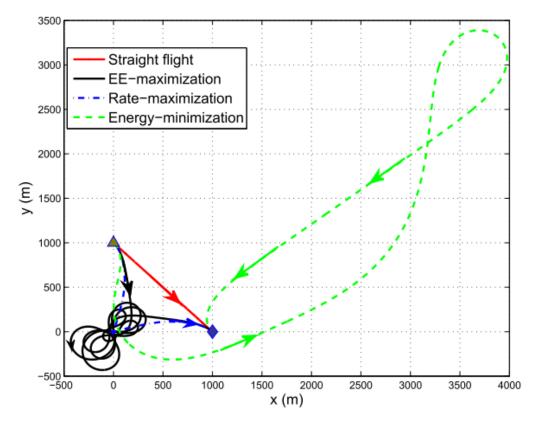
Aggregate throughput as a function of UAV trajectory

$$\bar{R}(\mathbf{q}(t)) = \int_0^T B \log_2\left(1 + \frac{\gamma_0}{H^2 + \|\mathbf{q}(t)\|^2}\right) dt$$


†z

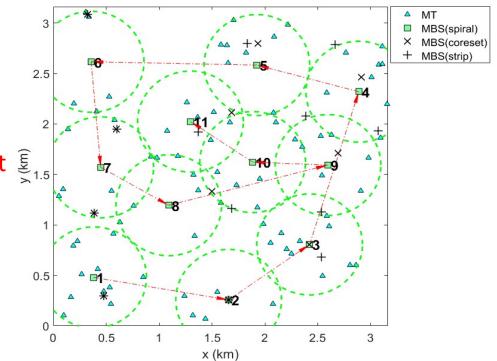
Energy efficiency in bits/Joule:

$$EE(\mathbf{q}(t)) = \frac{\bar{R}(\mathbf{q}(t))}{\bar{E}(\mathbf{q}(t))}$$


Energy Efficiency Maximization

D Maximize energy efficiency in bits/Joule via trajectory optimization

Non-convex, solved by time discretization and successive convex approximation (SCA)


Simulation Results: Throughput-Energy Tradeoff

- Rate-max trajectory: stay as close as possible with the ground terminal
- Energy-min trajectory: less acute turning
- EE-max trajectory: balance the two, "8" shape trajectory
- A fundamental Throughput-Energy Tradeoff

UAV BS Placement: A Special Case of Trajectory Optimization

- Minimize required number of UAV BSs to ensure all ground terminals are covered
- Core-sets based algorithm, optimal, but with exponential complexity
- New spiral-based BS placement algorithm, linear complexity
 - Example with 80 terminals:
 Proposed spiral: 11 BSs
 - Optimal core-sets: 11 BSs
 - Benchmark strip-based: 13 BSs

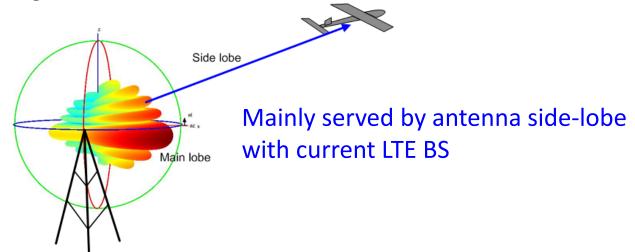
J. Lyu, Y. Zeng, R. Zhang, and T. J. Lim, "Placement Optimization of UAV-Mounted Mobile Base Stations", *IEEE Commun. Letters*, Mar. 2017. (IEEE Communications Society Heinrich Hertz Award, 2020)

Outline

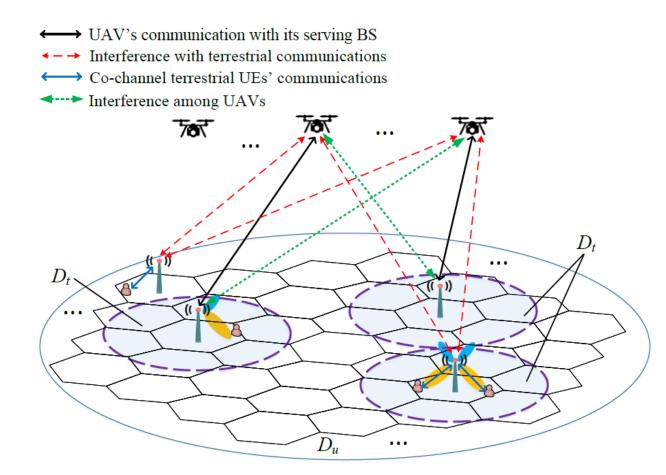
Integrating UAVs/Drones into Future Wireless Networks

- Motivations and benefits
- > What's new over terrestrial communications?

Two Main Challenges


Trajectory optimization for UAV-assisted communication

Aerial-ground interference mitigation in cellular-connected UAV


Conclusion and Future Work

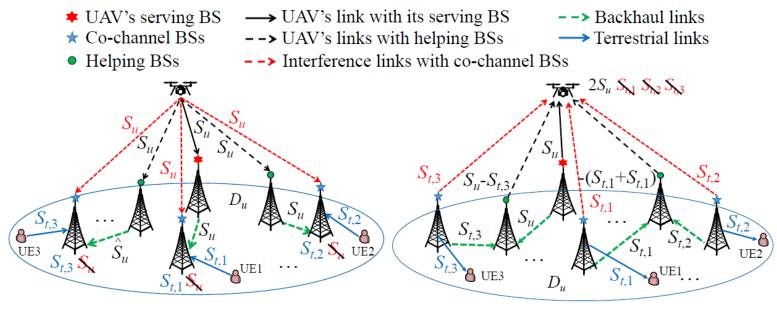
Cellular-Connected UAV: Main Challenges

- High altitude
 - 3D coverage is challenging: existing BS antennas tilted downwards
- □ High 3D mobility
 - Frequent handovers, cell selection
- Asymmetric downlink/uplink: ultra-reliable CNPC versus high-rate payload data
- **Strong air-ground LoS dominant channel (vs. terrestrial NLoS channels)**
 - Pro: High macro-diversity gain: a UAV can connect with more ground BSs
 - Con: Severe aerial-ground interference: a UAV can cause/receive interference to/from more ground users/BSs

Aerial-Ground Interference

Aerial-ground interference is more severe than terrestrial interference
 Conventional terrestrial interference mitigation techniques may be ineffective to deal with the stronger UAV-ground interference

Aerial-Ground Interference Mitigation


New aerial-ground interference mitigation techniques:

- Cooperate interference cancelation
- Interference-aware trajectory design
- Simultaneous navigation and radio mapping via deep reinforcement learning
- Massive MIMO with pilot decontamination
- D2D-assisted UAV swarm communications

Cooperate Interference Cancelation

Cooperate interference cancelation (CIC)

- Idle helping BSs decode/transmit interference in the UL/DL to facilitate interference cancelation at the co-channel BS/UAV
- Different from conventional CoMP and NOMA

(a) Uplink CIC

(b) Downlink CIC

L. Liu, S. Zhang, and R. Zhang, "Multi-beam UAV communication in cellular uplink: cooperative interference cancellation and sum-rate maximization," *IEEE Transactions on Wireless Communications*, October 2019.

W. Mei and R. Zhang, "Cooperative downlink interference transmission and cancellation for cellular-connected UAV: A divide-and-conquer approach," *IEEE Transactions on Communications*, February 2020.

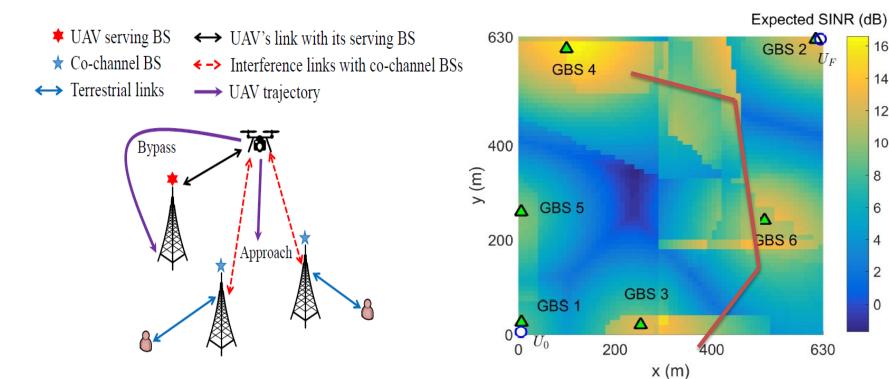
16

14

12

10

8

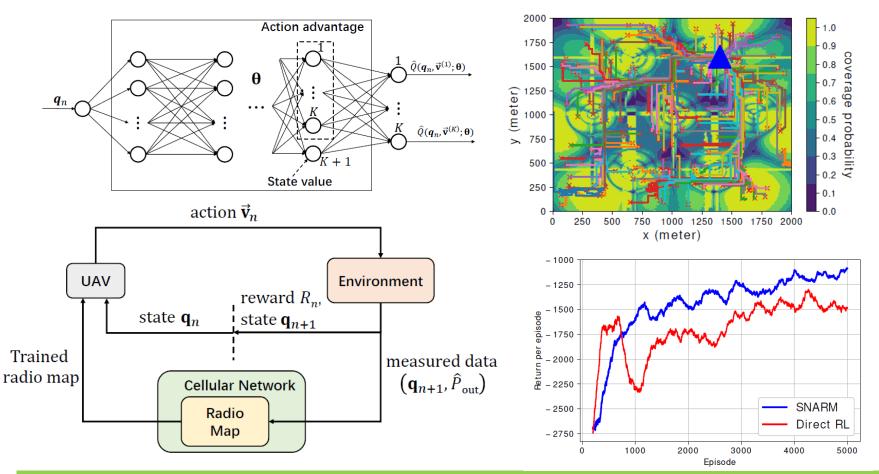

6

4

2

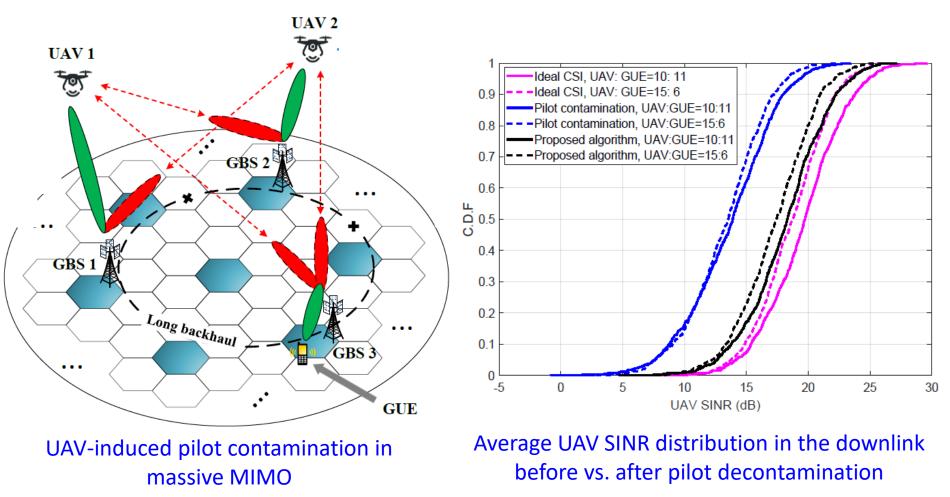
0

Interference-Aware Trajectory Design


Trajectory adaptation to avoid strong interference with ground BS

Radio-map/SINR-map based trajectory design

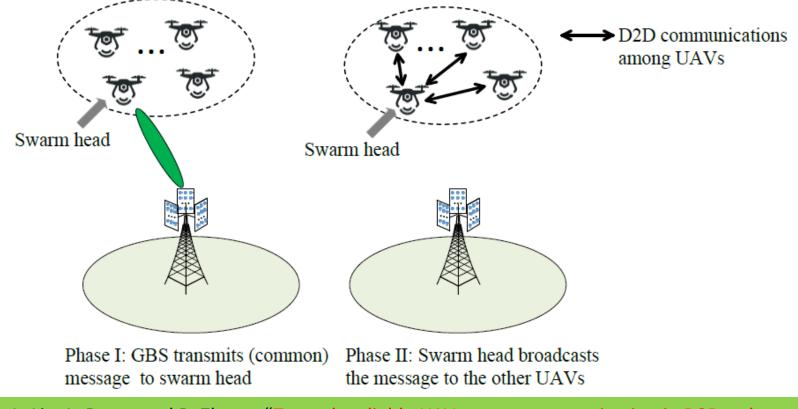
S. Zhang, Y. Zeng, and R. Zhang, "Cellular-enabled UAV communication: a connectivity-constrained trajectory optimization perspective," IEEE Transactions on Communications, March 2019. (IEEE Communications Society Young Author Best Paper Award, 2022)


S. Zhang and R. Zhang, "Radio map based 3D path planning for cellular-connected UAV," IEEE Transactions on Wireless Communications, March 2021.

Simultaneous Navigation and Radio Mapping via Deep Reinforcement Learning

Y. Zeng, X. Xu, S. Jin, and R. Zhang, "Simultaneous navigation and radio mapping for cellular-connected UAV with deep reinforcement learning," *IEEE Transactions on Wireless Communications*, July 2021.

Massive MIMO with Pilot Decontamination



R. Lu, Q. Wu, and R. Zhang, "Pilot decontamination for massive MIMO network with UAVs," IEEE Wireless Communications Letters, November 2020.

D2D-assisted UAV Swarm Communications

Challenges for Massive MIMO to support UAV swarm communications

- More severe pilot contamination than single UAV
- Insufficient spatial resolution due to small inter-UAV distance in swarm

Y. Han, L. Liu, L. Duan, and R. Zhang, "Towards reliable UAV swarm communication in D2D-enhanced cellular network," *IEEE Transactions on Wireless Communications*, March 2021.

Conclusion

- Integrating UAVs into 5G and beyond: a promising paradigm to embrace the new era of Internet-of-drones (IoD)
- Cellular-Connected UAV: UAV as new aerial user/terminal
- UAV-Assisted Communication: UAV as mobile BS/relay/data collector
- Many challenges, among them two crucial ones are
 Joint trajectory/placement and communication design
 Aerial-ground interference mitigation
- □ Much more to be investigated
 - safety/security issues, integration with satellite, energy replenishment, integrated communication and sensing, etc.

Directions for Future Work

- □ UAV-BS/UE channel modelling and experimental verification
- □ 3D network modelling and performance analysis
- General UAV energy model and energy-efficient design
- □ Security issues in UAV communications
- □ Massive MIMO/mmWave for UAV swarm communications
- Low-complexity UAV trajectory/placement design
- UAV communications with limited wireless backhaul
- UAV meets wireless power/energy harvesting/caching/edge computing/intelligent reflecting surface (IRS), etc.
- □ UAV/LEO/Satellite integrated communication systems
- □ UAV sensing and communication integrated design
- □ AI for UAV communications and networking
- □ UAV-5G/6G integration, standardization

Join IEEE VTS at www.vtsociety.org

Follow IEEE VTS on social media

Website www.vtsociety.org

Facebook facebook.com/IEEEVTS

Twitter @IEEE_VTS

- -

LinkedIn

www.linkedin.com/company/ieee-vehiculartechnology-society